

Simultaneous N₂ and CO measurements with broadband nanosecond CARS for graphite ablation in an inductively coupled plasma torch

Dan Fries, Spenser T. Stark, John. M. Murray, Rajkumar Bhakta, Sean P. Kearney, Noel T. Clemens, Philip L. Varghese Gordon Research Seminar - Laser Diagnostics in Energy and Combustion Science · July 9th, 2023 · Newry, ME

Predictive Engineering & Computational Science

The University of Texas at Austin Aerospace Engineering and Engineering Mechanics Cockrell School of Engineering

https://pecos.oden.utexas.edu

PECOS

Acknowledgements

This material is based upon work supported by the Department of Energy, National Nuclear Security Administration under Award Number DE-NA0003969.

Faculty & Staff: Noel T. Clemens, Philip L. Varghese

Graduate students at UT: Spenser T. Stark, John. M. Murray

Collaboration with Sean P. Kearney and Rajkumar Bhakta from Sandia National Laboratories: a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Development of Thermal Protection Systems (TPS)

Hypersonic atmospheric re-entry: Horvath et al., NASA Langley Tech. rep. NASA Langley Research Center (2004)

TPS are used for

- spacecraft during atmospheric re-entry.
- ⁻ hypersonic aircraft during flight.
- Processes at TPS are complex multi-physics problems.
- Radiative heat load has big impact on TPS design and weight¹.
- Graphite based TPS: CN is a strong radiator.
- CN concentration influenced by reactions forming: N,
 O, and CO^{2,3}.

[1] Caillault et al., "Radiative heating predictions for Huygens entry". J. of Geophys. Res.: Planet (2006)
 [2] Park et al., "Chemical-Kinetic Parameters of Hyperbolic Earth Entry". J. Thermophys. Heat Tr. (2001).
 [3] Alba et al., "Development of a nonequilibrium finite-rate ablation model for radiating earth reentry flows". J. Spacecraft Rocket (2016)

PECOS

3

Challenges in the Development of Thermal Protection Systems

- Different models disagree with each other¹
- Models have disagreed with experiments²

ODEN INSTITUTE

 More recently: new model development³ using molecular beam experiments⁴

Figures from Alba et al. [2], results for different wall temperatures ch

- Judging model accuracy requires additional experimental data
- Oxidation processes are of great interest for radiation predictions²
- Utilize nanosecond multiplex Coherent Anti-Stokes Raman Scattering (CARS) to enable the spatially resolved simultaneous probing of CO and N2

[1] MacLean et al., "Finite-rate surface chemistry model, II: Coupling to viscous Navier-Stokes code". *42nd AIAA Thermophysics Conference* (2011)

[2] Alba et al., "Development of a nonequilibrium finite-rate ablation model for radiating earth reentry flows". J. Spacecraft Rocket (2016)

[3] Poovathingal et al., "Finite-rate oxidation model for carbon surfaces from molecular beam experiments". *AIAA J.* (2017)
[4] Murray et al., "Inelastic and reactive scattering dynamics of hyperthermal O and O2 on hot vitreous carbon surfaces". *J. Phys. Chem. C* (2015)

Experimental Setup – Inductively Coupled Plasma Torch

- Atmospheric pressure
- Nozzle diameter 30 mm
- Air plasma
- Exit velocity $\sim 15 \text{ m/s}$
- Exit temperature ~6000 K @ 5-20 mm from the nozzle exit
- Plume conditions near thermodynamic equilibrium

Broadband ns Multiplex CARS – N₂ Thermometry

ODEN INSTITUTE

ODEN INSTITUTE

(A) PECOS

7

Stokes Source Tuning and Optimization for N₂/CO

To probe N_2 and CO simultaneously:

- Need broad Stokes source spectral profile.
- Need sufficient sensitivity to relatively lower CO concentration.

Testing of Iso-q Graphite Samples

- Iso-q graphite sample with Ø30 mm.
- CARS positional accuracy $\pm 80~\mu{\rm m}$
- About 90 s to steady state surface temperature and recession rate.
 → ~1 mm/min

Two test cases

- 1. 10 kV anode voltage, 0.6 g/s tangential $\rightarrow \sim$ 130 W/cm², $T_s \sim$ 1700K (avg.)
- 2. 11.3 kV anode voltage, 0.4 g/s tangential + 0.3 g/s axial $\rightarrow \sim 190 \text{ W/cm}^2$, $T_s \sim 1980 \text{ K}$ (avg.)

Broadband ns CARS – Simultaneous Probing of CO and N₂

Heat flux ~130 W/ cm²

ODEN INSTITUTE

PECOS

10

Temperature and Relative Concentration Profiles

Surface tracking

Spectrum evaluation

ODEN INSTITUTE

- Average of four data sets each.
- Vertical error bars represent 1σ of data series.

Relative Concentrations and Equilibrium Estimate

Relative CO mole fraction

CO mole fraction determined using NASA CEA equilibrium calculations:

• CO + air.

ODEN INSTITUTE

• Get X_{CO} via root finding at measured CO/N2 ratio and temperature.

Equilibrium CO mole fraction

Conclusions

- Tailoring the Stokes spectral profile improves CO detectability.
- Peak CO concentration close to the sample surface: →~60% of the N2 concentration .
 → mole fraction of ~28% based on equilibrium CO + air mixture.
- Similar amounts of CO close to the sample surface for both $\dot{q}^{\prime\prime}$ cases.

Future Work

- Quantify detectability limit of CO, accuracy, and sensitivity of results to three-parameter fits.
- Compare measurements to phenomenological and finite rate graphite ablation models.

Thank you for your attention

Questions?

Poster 45

Contact: dan.fries@austin.utexas.edu

LinkedIn: Dan Fries

