

Characterization of periodic changes in an inductively coupled plasma using emission spectroscopy (among other things)

Dan Fries, Noel Clemens, Philip Varghese

75th Annual Meeting APS DFD · Nov. 20-22, 2022 · Phoenix, AZ

Predictive Engineering & Computational Science

https://pecos.oden.utexas.edu

ICP Torch

Inductively coupled plasma torch: $\sim 30-60$ kW input power $\sim 7-20$ m/s exit velocities ~ 5000 K expected in plasma plume. Power coupled by RF circuit at 6 MHz. Swirl stabilized core.

- Applications: material testing, gas conversion, propulsion.
- How steady are the plasma properties?
- Operating conditions: atmospheric pressure, argon 40 slpm & 10.2 kV, air 30 slpm & 10 kV.

ICP Torch

Inductively coupled plasma torch: $\sim 30-60$ kW input power $\sim 7-20$ m/s exit velocities ~ 5000 K expected in plasma plume. Power coupled by RF circuit at 6 MHz. Swirl stabilized core.

- Applications: material testing, gas conversion, propulsion.
- How steady are the plasma properties?
- Operating conditions: atmospheric pressure, argon 40 slpm & 10.2 kV, air 30 slpm & 10 kV.

Measurements Utilized and Plume Properties

Measurement techniques used:

- Rogowski coils (current).
- Water cooled pitot probe^a (dynamic pressure)
- High-speed imaging.

ODEN INSTITUTE

- N₂ Coherent Anti-Stokes Raman Scattering^b (CARS, T_{vib}).
- Ar and O optical emission spectroscopy (OES, T_{el}^*).
 - Ar transitions from 4p manifold, 18 transitions $\Delta E_{max}\approx 1.8~{\rm eV}.$
 - O two transitions at 10.74 (777.194 nm) and 10.99 eV (844.636 nm).

^aMeasurements performed by Dillon Ellender ^bcollab. Sean Kearney & Rajkumar Bhakta (Sandia National Labs), Spenser Stark CARS/OES radial temperature profiles + equilibrium

density calculation + pitot probe measurements:

Measurements Utilized and Plume Properties

Measurement techniques used:

- Rogowski coils (current).
- Water cooled pitot probe^a (dynamic pressure)
- High-speed imaging.
- N₂ Coherent Anti-Stokes Raman Scattering^b (CARS, T_{vib}).
- Ar and O optical emission spectroscopy (OES, T_{el}^*).
 - Ar transitions from 4p manifold, 18 transitions $\Delta E_{max}\approx 1.8~{\rm eV}.$
 - O two transitions at 10.74 (777.194 nm) and 10.99 eV (844.636 nm).

^aMeasurements performed by Dillon Ellender ^bcollab. Sean Kearney & Rajkumar Bhakta (Sandia National Labs), Spenser Stark CARS/OES radial temperature profiles + equilibrium

density calculation + pitot probe measurements:

Periodic Changes in Plasma - Fast

Results from Photron Nova camera at 4 kHz: Argon Plume Air Plume

 \rightarrow Also discussed in Fries et al.¹ and 180 Hz visible in current measurements.

- \rightarrow OES temporally under-resolved at f=200 Hz.
- \rightarrow Average excitation temperature changes are relatively small: Ar $\pm9\%$ (mean 5128 K), O $\pm3\%$ (mean 5150 K).

¹Fries, Clemens, and Varghese (2022), "Time Dynamics of an Inductively Coupled Plasma Torch".

Periodic Changes in Plasma - Slow

CARS N_2 measurements at 10 Hz over 15 min reveal low frequency variations:

ODEN INSTITUTE

Oscillations become more pronounced in the shear layer at 0.05 Hz:

- \Rightarrow On centerline, temperature variations around $\pm 4\%.$
- \Rightarrow Does not show up as peak in current measurements.
- \Rightarrow Slow variations in supply gas flow, but not pronounced at 0.05 Hz and changes $\mathcal{O}(1\%).$

Periodic Changes in Plasma - Slow

Argon OES signal shows ~ 30 s time scale:

Atomic oxygen OES fluctuations less clear:

 \Rightarrow Ar mean temp 6512 K, changes <5%.

ODEN INSTITUTE

 \Rightarrow O mean temp 5150 K, changes < 3%.

- \rightarrow Interestingly, higher temperature correlates with lower signal.
- \rightarrow Atomic oxygen results more noisy: only two transitions, small energy gap.

Plasma Plume Fluctuations Considered

Sources considered:

- Rectifier imperfections, i.e. fluctuations in current/voltage and B-field^a.
- Acoustic oscillations in axial direction.
- Vortex shedding at nozzle exit.
- Linear stability of plasma plume.
- Buoyancy^b.
- Non-buoyant oscillating mode for low density jets^c.

^aPlayez and Fletcher (2008), "Spectroscopic analysis of titan atmospheric plasmas".

^bCetegen and Kasper (1996), "Exp. on the oscillatory behavior of buoyant plumes of He and He-air mixtures".

^cKyle and Sreenivasan (1993), "The instability and breakdown of a round variable-density jet".

Device properties:

- Rectifier: three-phase half-wave with 60 Hz input AC.
- Reynolds numbers Ar ≈ 200 330, Air ≈ 90 - 190 ⇒ can trigger growth of disturbances Re > 40^a.
- Density ratio $S_{\rm Ar} \approx = 0.05 0.10$ and $S_{\rm Air} \approx = 0.02 - 0.05$. Comparable to helium jets, or lower.
- Richardson number $Ri_{\infty} << 0.1 \Rightarrow$ shear dominated.

^aLessen and Singh (1973), "The stability of axisymmetric free shear layers".

Estimated Plasma Plume Fluctuations

Gas	Rectifier	Acoustics	Vortex	Linear	Buoyancy	Oscillating
Argon	180 Hz	802-1127 Hz	435-676 Hz	48-78 Hz	21-47 Hz	136-211 Hz
			neutral	11-17 Hz		
Air	180 Hz	1049-1333 Hz	442-707 Hz	49-79 Hz	21-49 Hz	120-192 Hz
			neutral	11-18 Hz		

Linear stability \rightarrow max. amplification frequency and neutral disturbance.

Buoyancy and linear stability are close ightarrow Ri-number suggests shear dominated .

Observed:

- Rectifier oscillations \rightarrow change in excitation temperature is small.
- Very low frequency oscillation $< 0.1 \text{ Hz} \rightarrow \text{no clear origin.}$

Conclusion

Results

- Many possible sources of periodic fluctuations in plume. Apparently dominant: rectifier and something else.
- Fast fluctuations should have no influence on bulk properties, kinetics.
- Slow OES temperature measurements of O in similar to N_2 CARS.
- OES temperature fluctuations have opposing trend to integrated signal strength.
- Slow N₂ ground state fluctuations strong enough to influence at least kinetics.

Future Plans

- Check for long period fluctuations in power input, with upgraded torch monitoring systems.
- Check for long period fluctuations from core: precessing vortex core.
- Quantify impact of fluctuations on bulk properties and kinetics at interfaces.
- Quantify fast fluctuations for ground state oxygen.

Thank you!

Acknowledgments

This material is based upon work supported by the Department of Energy, National Nuclear Security Administration under Award Number

DE-NA0003969.

References I

- Cetegen, B. M. and K. D. Kasper. "Exp. on the oscillatory behavior of buoyant plumes of He and He-air mixtures". *Phys. Fluids* 8.11 (1996), pp. 2974–2984.
- Fries, Dan, Noel T Clemens, and Philip Varghese. "Time Dynamics of an Inductively Coupled Plasma Torch". *AIAA SCITECH 2022 Forum*. 2022, p. 0984.
- Kyle, D. M. and K. R. Sreenivasan. "The instability and breakdown of a round variable-density jet". *J. Fluid Mech.* 249 (1993), pp. 619–664.
- Lessen, M. and P. J. Singh. "The stability of axisymmetric free shear layers". J. Fluid Mech. 60.3 (1973), pp. 433–457.
- Playez, M. and D. G. Fletcher. "Spectroscopic analysis of titan atmospheric plasmas". J. Thermophys. Heat Tans. 22.2 (2008), pp. 150–156.

