

Hummingbird Space Exploration (HSX) Team

Co-founders:

Zu Puayen Tan (Ph.D.)

Georgia Institute of Technology

NEW SPACE: BIG PICTURE

<u>Smallsats</u>

- Missions: Tech demo, science and communications.
- Low function wrt. large sat.^[1]

Solar cell: 75% Attitude ctrl: 40% Nav: 16% Orbit ctrl: 9% Data-rate: <9600bps

Growing: **550/yr** by 2020

Nanolaunchers

- NO MORE rideshare.
- ➢ 5-500kg LEO demand. ^[2]

Space Debris

Currently:^{13]} 500,000 > Marble-size 20,000 > Softball-size

- > Avg cubesat lifespan: 8month.
- > Avg orbital lifespan: <5*yr*.^[1]
- "Dead-sat" and spent stages on orbit.
- Kessler Syndrome.

[1] Bouwmesster J. and Guo J. "Survey of Worldwide Pico- and Nanosatellite Missions, Distributions and Subsystem Technology." Acta Astronautica (2010).

[2] Niederstrasser C. and Frick W. "Small Launch Vehicles – a 2016 State of the Industry Survey." IAC-16-B4.5.10 (2016).

[3] "Space Debris and Human Spacecraft." NASA https://www.nasa.gov/mission_pages/station/news/orbital_debris.html (2013)

- 1. Higher mission capabilities via larger volume.
- 2. Timely launch.
- 3. Low tech barrier.
- 4. Maneuverability.
- 5. Sample return mission.
- 6. Launch abort.
- 7. Neutral or negative space-debris footprint.

Legacy: BioDOME CAPSULE

- Microgravity experiments.
- Space exposure experiments.
- On-orbit maneuverability.
- UTTR landing.

Mission

Free-Flyer

Docking

Detachable Biopan unit.

Robotic arm retrieval.

UTTR landing.

Mission •

<u>ISS</u>

Status: Sizing and optimization <u>completed</u>. Published in *Journals of Spacecraft and Rockets* (2016)^[2]

"Chapter 6: FOTON Retrievable Capsules," European Users Guide to LowGravity Platforms, European Space Agency, Rept. UIC-ESA-UM-0001, Erasmus User Centre and Communication Office, Noordwijk, The Netherlands, 2005.
 Rossman G., LeVine M. J., Lawlor S., Sloss T., Mishra P., Tan Z. P. and Braun R. D. Conceptual Design of a Small Earth Reentry Vehicle for Biological Sample Return", Journals of Spacecraft and Rockets (2016).

Earth (c) NASA Johnson Flickr

LAUNCH on Rocket Lab Electron

UTTR EDL

ORBITAL MANEUVER

INITIAL ORBIT

+++

<<DEBRIS>>

END MISSION DEBRISCAPTURE

Cost Estimates

- ➤ Total Cost to 1st Flight Model: \$15.6M
- > Avg cost per capsule (w/ reuse): \$440,000
- Breakeven Year: 2025
- Longterm savings for cubesat developers: \$74,000 / satellite
- ightarrow Analysis covers only cubesat industry and debris recovery

Status Concepting

+1 year plan:

- 1. Minimal viable product.
- 2. Business plan refinement.
- 3. Mission profiles development.
- 4. Sizing and optimization.
- 5. Team development.
- 6. Initial design review.

+2 year plan:

- 1. Components design.
- 2. Components test.
- 3. Ground-test Vehicle 1.

We're here for:

- \succ Academia \rightarrow industry exposure.
- > Industrial feedback.
- > Advisors & collaborators.
- Reach-out to clients.

Market Potential

- Linear growth in cubesat market ^[1]
- Min demand: >9% of cubesats demand maneuvering capability ^[2]
- Other markets under assessment: reentry capability, exposure-experiment, inspace manufacturing, space-tug debris-removal etc.

Development Timeline

J+++

Q-							
Potential Invest	t <u>ment</u> • Business	s plan com	petition (BPC) support. •	NASA SBR funding.			
Cottugro Di	• Startup	accelerato	DITS	Formation as a "Tech	Consultation Company"	Transition to	، "Real Product Company
CONCEPT	NG COMMITT		VALIDATING	Haraware Priase	PROTOTYPE		
	Preliminary market/product	: R&D	 Min viable product Freeze cost/market projection 	- Sizing&Optimizatio	on Compor design c	ient ind dev	1 st test article
May 2017	Ju	2017	Dec 2017		May 2018 D	ec 2018	May 2019
<u>/alues</u> • •	BPC credentials, exposure/ feedback Exit Strategy	 Buil mar insig Pote pub 	lt up detailed rket analysis and ghts. ential for plication.	demic papers publication. ent-filing for Hummingbird	Bifurcation: Jo	vin with esta vy?	blished new
			+ +		¢	+	↓ ↓
<u> HSX Cost/Year</u>			\$166k (2017)		\$6.97m (2018)	\$8.46m (2019)	Ş24.1n (2020)

Tech Details Aerogel Debris Capture

Experimentally proven capture capability: ^[1-2]

Alternative materials: [3]

<0.1mm 3-10km/s particle capture

Polyimide foam, foil stack

Hummingbird Strategy: Velocity-matched intercept → larger particle capture. Higher-density materials possible.

Alternative Methods: ^[4,5] Robotic arm, Gossamer device, Flexible capture

[1] Woignier T., Duffours L., Colombel P. and Durin C. "Aerogels Materials as Space Debris Collectors." Advances in Materials Science and Engineering (2013).

[2] Horz F., Cintala M. J., Zolensky M. E., Bernhard R. B., Davidson W. E., Haynes G., See T. H., Tsou P. and Brownlee D. E. "Capture of Hypervelocity Particles with Low-Density Aerogel." NASA TM-98-201792 (1998).

[3] Hanada T. and Ariyoshi Y. "Passive Orbital Debris Removal using Special Density Materials." Kyushu University, IHI Corporation and JAXA Propriety.

[4] Nock, K. T. et al., "Gossamer Orbit Lowering Device (GOLD) for Safe and Efficient De-orbit", AIAA/AAS Astrodynamics Specialist Conference (2010), developed by Global Aerospace Corporation

[5] Benvenuto, R. and Lavagna, M. R., "Flexivle Capture Devices for Medium to Large Debris Active Removal: Simulations results to Drive Experiments", ESA Robotics (2013)

Tech Details

Propulsion

Hybrid System

• MMH+NTO or AF-M315E^[1]

1 <u>Chemical</u>

- Launch abort and on-orbit maneuverability
- 15 kg of propellant

- Hall effect thruster
- On-orbit maneuverability
- 18 kg of propellant

<u>Total</u>: $\Delta V = 1.75 \ km/s$

Automatically analyze given mission trajectory, identify nearby^[2,3] reachable debris and autonomously perform capture/return.

Spores et al. "GPIM AF-M315E Propulsion System." 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit (2013).
 Cerf, M., "Multiple Space Debris Collecting Mission Debris Selection and Trajectory", EADS Astrium Space Transportaion (
 Barbee, B. W. et al., "Design of Spacecraft Missions to Remove Multiple Orbital Debris Objects", AAS Guidance and Control Conference (2012)