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Motivation
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• Plasmas are relevant in material processing, medicine, 
energy production, hypersonics, and space propulsion. 

• Complex chemistry and non-equilibrium states: 
challenging for predictive modeling efforts.

• Argon plasma: well known but limited diagnostic 
approaches. 

• Emission spectroscopy both simple and applicable 
but many uncertain parameters.

• Bayesian inference for UQ and higher fidelity results:

→Has been done for singular transition in fusion device [1,2].

→Extract information over a larger spectral range.

→Include knowledge about transition parameters.

→Extract temperature and excited species number densities.

[1] Kwak et al., “Bayesian modelling of the emission spectrum of the Joint European Torus Lithium Beam Emission 

Spectroscopy system”, Rev. Sci. Inst. (2016) 

[2] Kwak et al., “Bayesian electron density inference from JET lithium beam emission spectra using Gaussian 

processes”, Nucl. Fusion (2017)



Experimental Setup
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Capacitive glow dischargeICP plasma torch

Argon spectroscopy

General Properties: 

• 350 mm to 750 mm spectrometer

• 150 g/mm grating

• CCD and intensified CCD cameras



• Bayes’ theorem: 𝑝 𝑥|𝑏 ∝ 𝑝 𝑏|𝑥 ∙ 𝑝(𝑥)

• Take 𝑥 to be quantities of interest: 𝑇, 𝑛𝑗

• 𝑥 can include additional uncertain parameters: 
∆𝐿, 𝑤, 𝐴𝑗𝑖

• 𝑏 is a vector of observations, i.e. the data that 
has been collected,

⎻ could be raw camera counts,

⎻ could be intensity corrected spectra,

⎻ could be emission coefficients.

Bayesian Formulation
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Applied to capacitive glow discharge

• Measurement ҧ𝜖𝑗𝑖 = 
∆𝜆

𝐶(𝜆) 𝑆𝑗𝑖 𝜆 and model ҧ𝜖𝑗𝑖 = 𝑛𝑗 𝐴𝑗𝑖
ℎ𝑐
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Δ𝐿 with

ҧ𝜖𝑗𝑖 = ҧ𝜖𝑗𝑖 + 𝜀 or more generic 𝑏 = 𝑏 + 𝜀

• The error 𝜀 is additive and a combination of random and shot noise, approximated by 
Gaussian PDFs → Likelihood: multi-variate normal (MVN) distribution
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Assumptions:

• Intensity correction 𝐶(𝜆) and baseline have no uncertainty

• Each measurement is completely independent

• No model uncertainty from choice of lineshape

Bayesian Formulation – Population Density
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Bayesian Formulation – Population Density
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Direct: ҧ𝜖𝑗𝑖  =  𝑛𝑗 𝐴𝑗𝑖
ℎ𝑐

𝜆𝑗𝑖
Δ𝐿 • Priors: 

⎻  𝑛𝑗: Gaussian, locally flat with very large 

standard deviation, mean is first guess from 
LSQ solution

⎻ 𝐴𝑗𝑖: Gaussian, data from NIST, 

marginalized out of likelihood to 
reflect knowledge

⎻ Δ𝐿: Gaussian, from auxiliary measurements

• Observed 26 transitions from 10 states



Bayesian Formulation – Population Density
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Least-squares solution: maximize 
unweighted likelihood• Priors: 

⎻  𝑛𝑗: Gaussian, locally flat with very large 

standard deviation, mean is first guess from 
LSQ solution

⎻ 𝐴𝑗𝑖: Gaussian, data from NIST, 

marginalized out of likelihood to 
reflect knowledge

⎻ Δ𝐿: Gaussian, from auxiliary measurements

• Observed 26 transitions from 10 states



Bayesian Formulation – Population Density
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Corner plot of joint PDFs
• Priors: 

⎻  𝑛𝑗: Gaussian, locally flat with very large 

standard deviation, mean is first guess from 
LSQ solution

⎻ 𝐴𝑗𝑖: Gaussian, data from NIST, 

marginalized out of likelihood to 
reflect knowledge

⎻ Δ𝐿: Gaussian, from auxiliary measurements

• Observed 26 transitions from 10 states

• Posterior: sampled using Markov Chain 
Monte Carlo Method (emcee package [1]): 
50,000 samples, mean acceptance ratio 
~0.39

[1] Foreman-Mackey et al., “emcee: The MCMC Hammer”, Publ. Astron. Soc. Pac. (2013) 



Bayesian Formulation – Population Density
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Bayesian Result• Priors: 

⎻  𝑛𝑗: Gaussian, locally flat with very large 

standard deviation, mean is first guess from 
LSQ solution

⎻ 𝐴𝑗𝑖: Gaussian, data from NIST, 

marginalized out of likelihood to 
reflect knowledge

⎻ Δ𝐿: Gaussian, from auxiliary measurements

• Observed 26 transitions from 10 states

• Posterior: sampled using Markov Chain 
Monte Carlo Method (emcee package [1]): 
50,000 samples, mean acceptance ratio 
~0.39

[1] Foreman-Mackey et al., “emcee: The MCMC Hammer”, Publ. Astron. Soc. Pac. (2013) 



Results – Population Density
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• ∆𝐿 = 1.8 ± 0.4 cm (compare to 10 cm 
diameter of glow discharge).

• 1torr results on same order of 
magnitude as detailed collisional-
radiative model [1].

• Can use results for validation and 
comparison to lumped states models.

[1] Iordanova & Koleva, “Optical emission spectroscopy diagnostics of inductively-driven plasmas in argon gas at low pressures”, Spect. Acta B (2007)
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Applied to ICP plasma torch

• Measurement model in thermal equilibrium:

𝐿𝑒,𝜆(𝜆) =  𝑔𝑗𝑒−𝐸𝑗/𝑘𝑇
𝐴𝑗𝑖

𝜆𝑗𝑖
𝜑 𝜆𝑗𝑖 , 𝑤 = 𝑏

𝑏 = መ𝐶(𝜆)𝑆(𝜆)

• Likelihood: assume additive error as before, 𝒙 = (𝑻, 𝒘)

• Priors:
⎻ 𝑇: Gaussian, locally flat with very large standard deviation, mean is first guess from LSQ solution

⎻ 𝑤: Gaussian, from preliminary processing tests

• Assumptions: same as in population density approach 
→ marginalization in 𝐴𝑗𝑖 is work in progress.

• Posterior: sampled using emcee package (Markov-Chain Monte-Carlo): 
5,000 samples, mean acceptance ratio ~0.64

Bayesian Formulation – Temperature

12



• Temperatures:

⎻ Median: 5953 K

⎻ 5%: 5858 K

⎻ 95%: 6051 K

• Voigt lineshape 𝑤𝐺 , 𝑤𝐿

⎻ Median: (0.30,0.20)

⎻ 5%: (0.29,0.20)

⎻ 95%: (0.30,0.21)

• Temperature from Boltzmann plot 
method: 5918 ±1000 K

→ Uncertainties in Bayesian result very 
low due to missing marginalization in 𝐴𝑗𝑖.

Results –Temperature 
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Boltzmann plot

𝑇𝑝𝑜𝑠𝑡 = 5953 K

𝑇𝑓𝑖𝑡 = 5918 K



• Bayesian framework to extract information from 
emission spectroscopic data.

• Includes a priori knowledge about spectroscopic 
and instrument parameters.

• Provides direct estimate of uncertainties. 

Future work

• Add inference of intensity calibration and baseline.

• Unify treatment of population densities and 
temperature.

• Extract additional information with more complex 
measurement model

⎻ Electron number density
⎻ Multi-temperature EEDFs
⎻ Molecular Species

Conclusions
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This material is based upon work supported by the Department of Energy, National Nuclear 

Security Administration under Award Number DE-NA0003969

THANK YOU!

Questions?
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