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Motivation

° Plasmas are relevant in material processing, medicine,
energy production, hypersonics, and space propulsion.

* Complex chemistry and non-equilibrium states:
challenging for predictive modeling efforts.

* Argon plasma: well known but limited diagnostic
approaches.

* Emission spectroscopy both simple and applicable
but many uncertain parameters.

* Bayesian inference for UQ and higher fidelity results:
—>Has been done for singular transition in fusion device [1,2].
—> Extract information over a larger spectral range.
=2 Include knowledge about transition parameters.
—>Extract temperature and excited species number densities.

[1] Kwak et al., “Bayesian modelling of the emission spectrum of the Joint European Torus Lithium Beam Emission
Spectroscopy system”, Rev. Sci. Inst. (2016)

[2] Kwak et al., “Bayesian electron density inference from JET lithium beam emission spectra using Gaussian
processes”, Nucl. Fusion (2017)

Dark space

.

30 mm

/ Argon signal

REGIEIRUTE

Visible radiation

30 mm

ODEN INSTITUTE
—

2PECOS



Experimental Setup ICF plasrma "C" Capacitive glow Zacharge

Argon spectroscopy

General Properties:
Spectrometer
PI HRS-750 e 350 mm to 750 mm spectrometer

* 150 g/mm grating
PLMAX 3 e CCD and intensified CCD cameras

m~0.14
Convex lens =75 mm
| —

Apertures
I O -?

Photo lens =105 mm

Mirrors

Plasma source
Measured signal counts
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Bayesian Formulation

» Bayes’ theorem: p(x|b)  p(b|x) - p(x) Observation: argon plasma
spectrum
x10%
posterior likelihood prior .
=
. . ° . 1 _
* Take x to be quantities of interest: T, n; = ’
* x can include additional uncertain parameters: £10;
AL, w, A;; 5
* b is a vector of observations, i.e. the data that ] | I
has been collected, O —————— | ]
— could be raw camera counts, 650 700 750 800 850

i i A [nm
— could be intensity corrected spectra, [nm)

— could be emission coefficients.
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Bayesian Formulation — Population Density

Applied to capacitive glow discharge
* Measurement €; = [, C(A) Sj;(1) and model ; = n; A]l AL with

€ = e]l + £ or more generic b = b + ¢

* The error ¢ is additive and a combination of random and shot noise, approximated by
Gaussian PDFs = Likelihood: multi-variate normal (MVN) distribution

1 —~ T —~
b|n;,A;, AL = x) = ——|b— b(x F‘lb—bx}
p(b| n;, 4;; ) J(Zn)mdet(r)exp{ >[b = b)) I [b - b(x)]
1 : _ T _
e~ = " (%~ Br) (2~ Brr) + Gt
i=1
Assumptions:

* Intensity correction C(A) and baseline have no uncertainty
° Each measurement is completely independent

* No model uncertainty from choice of lineshape
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Bayesian Formulation — Population Density

hc

— n;: Gaussian, locally flat with very large & | 8
standard deviation, mean is first guess from 31012 ] oo
LSQ solution i § 0 ° 9
] @
— Aj;: Gaussian, data from NIST, = o ° .
marginalized out of likelihood to z 1 o’ o0 o
reflect knowledge = 1071 3
— AL: Gaussian, from auxiliary measurements = o
<
* Observed 26 transitions from 10 states =, 1010
o e Direct
A o
13.0 13.2 13.4

Upper state energy E; |eV]
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Bayesian Formulation — Population Density

* Priors:

n;: Gaussian, locally flat with very large

standard deviation, mean is first guess from
LSQ solution

— Aj;: Gaussian, data from NIST,

marginalized out of likelihood to
reflect knowledge

AL: Gaussian, from auxiliary measurements

* Observed 26 transitions from 10 states

—_t —_
- -
—t p—t
= [\)

Population density [1/m?]
=

Least-squares solution: maximize
unweighted likelihood
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Upper state energy E; |eV]

-
ODEN INSTITUTE

@PECOS




Bayesian Formulation — Population Density

* Priors:

Corner plot of joint PDFs

i

n;: Gaussian, locally flat with very large
standard deviation, mean is first guess from
LSQ solution

— Aj;: Gaussian, data from NIST,
marginalized out of likelihood to
reflect knowledge

— AL: Gaussian, from auxiliary measurements
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* Observed 26 transitions from 10 states

* Posterior: sampled using Markov Chain
Monte Carlo Method (emcee package [1]):

50,000 samples, mean acceptance ratio
~0.39

[1] Foreman-Mackey et al., “emcee: The MCMC Hammer”, Publ. Astron. Soc. Pac. (2013)
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Bayesian Formulation — Population Density

* Priors: Bayesian Result
— n;: Gaussian, locally flat with very large cg | ¥
standard deviation, mean is first guess from < {012 oo
LSQ solution i | g i ¥
— Aj;: Gaussian, data from NIST, = o ﬁl o
marginalized out of likelihood to G i. o8 °« -
reflect knowledge 2 1071 3
_ ] . o kS ]
AL: Gaussian, from auxiliary measurements = | e Divect o
* Observed 26 transitions from |0 states = qgl0] = LSQ
O 1 L Bayesian
* Posterior: sampled using Markov Chain A 3 N ° |
Monte Carlo Method (emcee package [I]): 13.0 13.2 13.4
50,000 samples, mean acceptance ratio Upper state energy E; [eV]

~0.39

[T Foreman-Mackey et al., “emcee: The MCMC Hammer”, Publ. Astron. Soc. Pac. (2013)
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4p10 at 12.907 eV
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—e—0.25 torr
—e— 1.0 torr

—e—5 torr

Results — Population Density
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* AL = 1.8 + 0.4 cm (compare to 10 cm
diameter of glow discharge).

H

o
—
)

Population density [1/m?]

* |torr results on same order of ' ' ' ' ' '
. . . 100 120 140 160 180 200
magnitude as detailed collisional- ip1 at 13.480 6V
radiative model [1]. | |

H

o
—
.

—e—0.25 torr
—#— 1.0 torr

* Can use results for validation and
comparison to lumped states models.

—e— ) torr
10 torr
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Population density [1/m?]

100 120 140 160 180 200
[I] lordanova & Koleva, “Optical emission spectroscopy diagnostics of inductively-driven plasmas in argon gas at low pressures”, Spect. Acta B (2007) Djschargc Voltagc [V}
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Results — Population Density

Sum of 4p states

10
* AL = 1.8 £ 0.4 cm (compare to 10 cm = —+—0.25 torr
diameter of glow discharge). —~ —'—1-0 torr
— —e— o torr
* |torr results on same order of iy 10 torr
o . o« o 7!
magnitude as detailed collisional- = __
radiative model [I]. ’E
* Can use results for validation and =
comparison to lumped states models. = .
o
o
Ay

100 120 140 160 180 200
Discharge voltage [V]

[I] lordanova & Koleva, “Optical emission spectroscopy diagnostics of inductively-driven plasmas in argon gas at low pressures”, Spect. Acta B (2007)

:ZT.DEINSTITUTE ’Q‘JPECOS




Bayesian Formulation — Temperature
Applied to ICP plasma torch

* Measurement model in thermal equilibrium:
Lea@) = . gje 5T (1) = b

b = C(A)S(A)
* Likelihood: assume additive error as before, x = (T, w)

* Priors:
— T: Gaussian, locally flat with very large standard deviation, mean is first guess from LSQ solution
— w: Gaussian, from preliminary processing tests

* Assumptions: same as in population density approach
— marginalization in Aj; is work in progress.

* Posterior: sampled using emcee package (Markov-Chain Monte-Carlo):
5,000 samples, mean acceptance ratio ~0.64
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Results —Temperature

* Temperatures:
~ Median: 5953 K
— 5%:5858 K
— 95%:6051 K

* Voigt lineshape (w¢, w;)
— Median: (0.30,0.20)
~ 5%: (0.29,0.20)
— 95%:(0.30,0.21)

* Temperature from Boltzmann plot
method: 5918 +1000 K

—> Uncertainties in Bayesian result very
low due to missing marginalization in Aj;.
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---- Bayesian Model

—— Experiment

Tpost — 5953 K

- == Baseline

1073 . - -
680 700 720 740
A [nm]
% Boltzmann plot
—331
Hq= 0 T
u;|-—lgtc —34 | \\\\\\\
BT Tr, = 5918K T
13.5 14.0 14.5
Ej [GV]
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Conclusions

* Bayesian framework to extract information from
emission spectroscopic data.

* Includes a priori knowledge about spectroscopic
and instrument parameters.

* Provides direct estimate of uncertainties.

Future work
* Add inference of intensity calibration and baseline.

* Unify treatment of population densities and
temperature.

° Extract additional information with more complex
measurement model

— Electron number density
— Multi-temperature EEDFs
— Molecular Species

This material is based upon work supported by the Department of Energy, National Nuclear
Security Administration under Award Number DE-NA0003969
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