The University of Texas at Austin

Time Dynamics of an Inductively Coupled Plasma Torch

Dan Fries, Noel Clemens, Philip Varghese

AIAA SciTech Forum 2021 - Hypersonic and Entry Flow Plasmas II - Jan. 3-7, 2022 - San Diego, CA

Copyright ©by Dan Fries, Noel Clemens, Philip Varghese, UT Austin. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission

Predictive Engineering & Computational Science

https://pecos.oden.utexas.edu This material is based upon work supported by the Department of Energy, National Nuclear Security Administration under Award Number DE-NA0003969

ICP Torch

Inductively coupled plasma torch:

- $\sim 30-60~\rm kW$ input power
- $\sim 7-20~{\rm MJ/kg}$ enthalpy
- $\sim 7-20~{\rm m/s}$ exit velocities
 - Power coupled by RF circuit at 6 MHz.
 - Swirl stabilized plasma core.
 - Measurements in core and 10 mm above nozzle.
 - How steady is plasma plume?^a \rightarrow Material testing.
 - Experimental conditions: argon 35-50 slpm at 10 kV, air 25-35 slpm at 10 kV and 11 kV.

ODEN INSTITUTE

^aplayez2008spectroscopic.

ICP Torch

Inductively coupled plasma torch:

- $\sim 30-60~\rm kW$ input power
- $\sim 7-20~{\rm MJ/kg}$ enthalpy
- $\sim 7-20~{\rm m/s}$ exit velocities
 - Power coupled by RF circuit at 6 MHz.
 - Swirl stabilized plasma core.
 - Measurements in core and 10 mm above nozzle.
 - How steady is plasma plume?^a \rightarrow Material testing.
 - Experimental conditions: argon 35-50 slpm at 10 kV, air 25-35 slpm at 10 kV and 11 kV.

^aplayez2008spectroscopic.

High-Speed Imaging

Fluctuations in Radiant Flux

Photron Nova at 1 kHz. 30 slpm air, 40 slpm argon at 10 kV DC anode voltage.Air PlumeArgon PlumeAir CoreArgon Core

High-Speed Imaging

Fluctuations in Radiant Flux

Air core: 30 slpm, 10 kV anode voltage

Argon plume: 40 slpm, 10 kV anode voltage

Argon core: 40 slpm, 10 kV anode voltage

High-Speed Imaging

Fluctuation Frequencies

- Fluctuations at 180 Hz not sensitive to: mass flow rate, applied power, working gas.
- Origin: circuit properties, vortex shedding^a, acoustics.
- Other frequency components currently not considered further.

^aplayez2008spectroscopic; cipullo2014investigation.

5

High-Speed Imaging

Fluctuation Frequencies

- Fluctuations at 180 Hz not sensitive to: mass flow rate, applied power, working gas.
- Origin: circuit properties, vortex shedding^a, acoustics.
- Other frequency components currently not considered further.

^aplayez2008spectroscopic; cipullo2014investigation.

ODEN INSTITUTE

Example Spectra Air

In the core, 30 slpm & 10 kV, phase averaged maximum

$$T_{
m N_2} = 7781$$
 K, $T_{
m N} = 7707$ K, $T_{
m O} = 10678$ K

Example Spectra Air

In the plume, 30 slpm & 10 kV, phase averaged maximum

$$T_{\rm equil} = 5696 \ {\rm K}$$

Example Spectra Argon

ODEN INSTITUTE

In the core, 40 slpm & 10 kV, phase averaged maximum

15

Example Spectra Argon

Quantification of Fluctuations

Air Plasma, 30 slpm & 10 kV

ODEN INSTITUTE

 \rightarrow non-equilibrium in core, near equilibrium in plume.

 \rightarrow absolute temperature changes in plume around 2% (100-150 K). Temperature accuracy within 4-5%.

Quantification of Fluctuations

Air Plasma Signal

Spectrometer:

$$dE_e(\nu) = \sum_{ji} \sum_{k}^{n_0 g_j \exp(-E_j/k_B T_e)} A_{ji} \int_{\Omega} h\nu\varphi(\nu,\nu_{ji}) d\Omega ds$$

Camera:

 $I = C(\nu) \cdot \int E_e(\nu) d\nu$

- Signal dependence: linear on density, exponential and more complex on temperature.
- 2% temperature change can explain large R_{im}/R_{int} observed, \Rightarrow signal fluctuations mostly due to temperature changes.
- Inert surface¹: $q_w \propto \sqrt{\rho} \cdot T_g \Rightarrow$ variations of $\leq 2\%$ at ~ 180 Hz.
- Not shown BUT other cases and argon yields similar results.

¹white2006viscous.

Conclusions

Results

- Dominant fluctuations at 180 Hz: insensitive to mass flow, power, and working gas.
- Both argon and air temperature variations around 2%, absolute temperature changes on same order as uncertainty.
- Confirms assumptions in literature^a.
- playez2008freestream^b observe larger temperature fluctuations using atomic oxygen TALIF.

^aplayez2008spectroscopic; cipullo2014investigation.

Future Plans

- More thorough characterization of uncertainties.
- Time-resolved voltage and spectroscopic measurements, to characterize temperature variations better.
- Compare line-of-sight averaged results with spatially resolved measurements.

Thank you! Questions?

^bplayez2008freestream.

References I

